Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38672704

RESUMO

Bioluminescence is the production of visible light by an organism. This phenomenon is particularly widespread in marine animals, especially in the deep sea. While the luminescent status of numerous marine animals has been recently clarified thanks to advancements in deep-sea exploration technologies and phylogenetics, that of others has become more obscure due to dramatic changes in systematics (themselves triggered by molecular phylogenies). Here, we combined a comprehensive literature review with unpublished data to establish a catalogue of marine luminescent animals. Inventoried animals were identified to species level in over 97% of the cases and were associated with a score reflecting the robustness of their luminescence record. While luminescence capability has been established in 695 genera of marine animals, luminescence reports from 99 additional genera need further confirmation. Altogether, these luminescent and potentially luminescent genera encompass 9405 species, of which 2781 are luminescent, 136 are potentially luminescent (e.g., suggested luminescence in those species needs further confirmation), 99 are non-luminescent, and 6389 have an unknown luminescent status. Comparative analyses reveal new insights into the occurrence of luminescence among marine animal groups and highlight promising research areas. This work will provide a solid foundation for future studies related to the field of marine bioluminescence.

2.
Sci Rep ; 10(1): 18762, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33128012

RESUMO

The function of pocket shark pectoral pockets has puzzled scientists over decades. Here, we show that the pockets of the American Pocket Shark (Mollisquama mississippiensis) contain a brightly fluorescent stratified cubic epithelium enclosed in a pigmented sheath and in close contact with the basal cartilage of the pectoral fins; cells of this epithelium display a centripetal gradient in size and a centrifuge gradient in fluorescence. These results strongly support the idea that pocket shark's pockets are exocrine holocrine glands capable of discharging a bioluminescent fluid, potentially upon a given movement of the pectoral fin. Such capability has been reported in many other marine organisms and is typically used as a close-range defensive trick. In situ observations would be required to confirm this hypothesis.


Assuntos
Nadadeiras de Animais/metabolismo , Tubarões/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Medições Luminescentes , Tubarões/fisiologia , Natação/fisiologia
3.
Nat Ecol Evol ; 2(2): 299-305, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348645

RESUMO

Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.


Assuntos
Isótopos de Carbono/análise , Cadeia Alimentar , Músculo Esquelético/química , Tubarões/fisiologia , Animais , Ecossistema , Oceanos e Mares , Fitoplâncton/química
4.
Int J Legal Med ; 131(2): 423-432, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27623973

RESUMO

Accurate determination of the origin and timing of trauma is key in medicolegal investigations when the cause and manner of death are unknown. However, distinction between criminal and accidental perimortem trauma and postmortem modifications can be challenging when facing unidentified trauma. Postmortem examination of the immersed victims of the Yemenia airplane crash (Comoros, 2009) demonstrated the challenges in diagnosing extensive unusual circular lesions found on the corpses. The objective of this study was to identify the origin and timing of occurrence (peri- or postmortem) of the lesions.A retrospective multidisciplinary study using autopsy reports (n = 113) and postmortem digital photos (n = 3 579) was conducted. Of the 113 victims recovered from the crash, 62 (54.9 %) presented unusual lesions (n = 560) with a median number of 7 (IQR 3 ∼ 13) and a maximum of 27 per corpse. The majority of lesions were elliptic (58 %) and had an area smaller than 10 cm2 (82.1 %). Some lesions (6.8 %) also showed clear tooth notches on their edges. These findings identified most of the lesions as consistent with postmortem bite marks from cookiecutter sharks (Isistius spp.). It suggests that cookiecutter sharks were important agents in the degradation of the corpses and thus introduced potential cognitive bias in the research of the cause and manner of death. A novel set of evidence-based identification criteria for cookiecutter bite marks on human bodies is developed to facilitate more accurate medicolegal diagnosis of cookiecutter bites.


Assuntos
Acidentes Aeronáuticos , Mordeduras e Picadas/patologia , Restos Mortais , Imersão , Tubarões , Animais , Feminino , Humanos , Masculino , Estudos Retrospectivos , Iêmen
5.
R Soc Open Sci ; 2(7): 150219, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26587280

RESUMO

The vast majority of species within the lanternshark genus Etmopterus harbour complex luminescent markings on their flanks, whose functional significance has long remained obscure. Recent studies, however, suggest these enigmatic photophore aggregations to play a role in intraspecific communication. Using visual modelling based on in vivo luminescence measurements from a common lanternshark species, we show that etmopterid flank markings can potentially work as a medium range signal for intraspecific detection/recognition. In addition, using molecular phylogenetic analyses, we demonstrate that the Etmopterus clade exhibits a greater than expected species richness given its age. This is not the case for other bioluminescent shark clades with no (or only few) species with flank markings. Our results therefore suggest that etmopterid flank markings may provide a way for reproductive isolation and hence may have facilitated speciation in the deep-sea.

6.
BMC Evol Biol ; 15: 162, 2015 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26277575

RESUMO

BACKGROUND: Squaliform sharks represent approximately 27 % of extant shark diversity, comprising more than 130 species with a predominantly deep-dwelling lifestyle. Many Squaliform species are highly specialized, including some that are bioluminescent, a character that is reported exclusively from Squaliform sharks within Chondrichthyes. The interfamiliar relationships within the order are still not satisfactorily resolved. Herein we estimate the phylogenetic interrelationships of a generic level sampling of "squaloid" sharks and closely related taxa using aligned sequences derived from a targeted gene capture approach. The resulting phylogenetic estimate is further used to evaluate the age of first occurrence of bioluminescence in Squaliformes. RESULTS: Our dataset comprised 172 putative ortholog exon sequences. Phylogenetic estimates result in a fully resolved tree supporting a monophyletic lineage of Squaliformes excluding Echinorhinus. Non-luminous Squalidae are inferred to be the sister to a clade comprising all remaining Squaliform families. Our results suggest that the origin of photophores is coincident with an elevated diversification rate and the splitting of families Dalatiidae, Etmopteridae, Oxynotidae and Somniosidae at the transition of the Lower to the Upper Cretaceous. The presence of luminous organs was confirmed for the Sleeper shark genus Zameus. These results indicate that bioluminescence in sharks is not restricted solely to the families Etmopteridae and Dalatiidae as previously believed. CONCLUSIONS: The sister-clade to non-luminous Squalidae comprises five families. The presence of photophores is reported for extant members of three out of these five families based on results of this study, i.e. Lantern sharks (Etmopteridae), Kitefin sharks (Dalatiidae) and Sleeper sharks (Somniosidae). Our results suggest that the origin of luminous organs arose during the rapid diversification event that gave rise to the extant Squaliform families. These inferences are consistent with the idea of diversification of Squaliform sharks being associated with the emergence of new deep-sea habitats in the Lower Cretaceous, which may have been facilitated by the evolution of bioluminescence.


Assuntos
Evolução Biológica , Cação (Peixe)/classificação , Cação (Peixe)/fisiologia , Animais , Núcleo Celular/genética , Cação (Peixe)/genética , Éxons , Feminino , Fósseis , Filogenia , Alinhamento de Sequência
7.
PLoS One ; 9(8): e104213, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25099504

RESUMO

The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484-491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions.


Assuntos
Luminescência , Pigmentação/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Tubarões/fisiologia , Animais , Células Fotorreceptoras Retinianas Bastonetes/citologia , Tubarões/anatomia & histologia
8.
Sci Rep ; 4: 4328, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24608897

RESUMO

Counterilluminating animals use ventral photogenic organs (photophores) to mimic the residual downwelling light and cloak their silhouette from upward-looking predators. To cope with variable conditions of pelagic light environments they typically adjust their luminescence intensity. Here, we found evidence that bioluminescent sharks instead emit a constant light output and move up and down in the water column to remain cryptic at iso-luminance depth. We observed, across 21 globally distributed shark species, a correlation between capture depth and the proportion of a ventral area occupied by photophores. This information further allowed us, using visual modelling, to provide an adaptive explanation for shark photophore pattern diversity: in species facing moderate predation risk from below, counterilluminating photophores were partially co-opted for bioluminescent signalling, leading to complex patterns. In addition to increase our understanding of pelagic ecosystems our study emphasizes the importance of bioluminescence as a speciation driver.


Assuntos
Luminescência , Tubarões/fisiologia , Animais , Modelos Biológicos
9.
Sci Rep ; 3: 1308, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23425862

RESUMO

We report the discovery of light organs (photophores) adjacent to the dorsal defensive spines of a small deep-sea lanternshark (Etmopterus spinax). Using a visual modeling based on in vivo luminescence recordings we show that this unusual light display would be detectable by the shark's potential predators from several meters away. We also demonstrate that the luminescence from the spine-associated photophores (SAPs) can be seen through the mineralized spines, which are partially translucent. These results suggest that the SAPs function, either by mimicking the spines' shape or by shining through them, as a unique visual deterrent for predators. This conspicuous dorsal warning display is a surprising complement to the ventral luminous camouflage (counterillumination) of the shark.


Assuntos
Tubarões/metabolismo , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/metabolismo , Animais , Luminescência , Especificidade de Órgãos , Pupila/fisiologia , Tubarões/anatomia & histologia
10.
J Exp Biol ; 215(Pt 10): 1691-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539736

RESUMO

The smalleye pygmy shark (Squaliolus aliae) is a dwarf pelagic shark from the Dalatiidae family that harbours thousands of tiny photophores. In this work, we studied the organisation and physiological control of these photogenic organs. Results show that they are mainly situated on the ventral side of the shark, forming a homogeneous ventral photogenic area that appears well suited for counterillumination, a well-known camouflage technique of pelagic organisms. Isolated ventral skin patches containing photophores did not respond to classical neurotransmitters and nitric oxide but produced light after melatonin (MT) application. Prolactin and α-melanocyte-stimulating hormone inhibited this hormonally induced luminescence as well as the spontaneous luminescence from the photogenic tissue. The action of MT seems to be mediated by binding to the MT(2) receptor subtype, as the MT(2) receptor agonist 4P-PDOT inhibited the luminescence induced by this hormone. Binding to this receptor probably decreases the intracellular cAMP concentration because forskolin inhibited spontaneous and MT-induced luminescence. In addition, a GABA inhibitory tonus seems to be present in the photogenic tissue as well, as GABA inhibited MT-induced luminescence and the application of bicuculline provoked luminescence from S. aliae photophores. Similarly to what has been found in Etmopteridae, the other luminous shark family, the main target of the luminescence control appears to be the melanophores covering the photocytes. Results suggest that bioluminescence first appeared in Dalatiidae when they adopted a pelagic style at the Cretaceous/Tertiary boundary, and was modified by Etmopteridae when they started to colonize deep-water niches and rely on this light for intraspecific behaviours.


Assuntos
Luminescência , Tubarões/fisiologia , Animais , Feminino , Luz , Masculino , Melatonina/metabolismo , Modelos Biológicos , Modelos Estatísticos , Neurotransmissores/metabolismo , Prolactina/metabolismo , Transdução de Sinais , alfa-MSH/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Commun Integr Biol ; 4(3): 251-3, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21980552

RESUMO

The velvet belly lantern shark (Etmopterus spinax) is a common deep-sea shark that has been used, in the recent years, as a model for experimental studies on physiological control of shark luminescence. These studies demonstrated that, unlike any other luminous organism, the luminescence of this shark was under a dual control of hormones and neurotransmitters (or neuromodulators). This paper, by making a short review of histological and pharmacological results from these studies, aims to propose a first model of luminescence control in E. spinax.

12.
Artigo em Inglês | MEDLINE | ID: mdl-21070868

RESUMO

Photogenic organs (photophores) of the velvet belly lantern shark (Etmopterus spinax) are under hormonal control, since melatonin (MT) and prolactin (PRL) trigger luminescence while α-melanocyte-stimulating hormone (α-MSH) prevents this light to be emitted. A recent study supported, however, the presence of numerous nerve fibres in the photogenic tissue of this shark. Immunohistochemical and pharmacological results collected in this work support these nerve fibres to be inhibitory GABAergic nerves since (i) GABA immunoreactivity was detected inside the photogenic tissue, where previous labelling detected the nerve fibre structures and (ii) GABA was able to inhibit MT and PRL-induced luminescence, which was on the other hand increased by the GABA(A) antagonist bicuculline (BICU). In addition, we also demonstrated that BICU can induce light per se by provoking pigment retraction in the pigmented cells composing the iris-like structure of the photophore, attaining, however, only about 10% of hormonally induced luminescence intensity at 10(-3)mol L(-1). This strongly supports that a GABA inhibitory tonus controls photophore "aperture" in the photogenic tissue of E. spinax but also that MT and PRL have more than one target cell type in the photophores.


Assuntos
Estruturas Animais/metabolismo , Luminescência , Tubarões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Estruturas Animais/citologia , Animais , Bicuculina/metabolismo , Bicuculina/farmacologia , Luz , Melatonina/metabolismo , Prolactina/metabolismo , Tubarões/fisiologia , alfa-MSH/metabolismo , alfa-MSH/farmacologia
13.
J Exp Biol ; 213(Pt 17): 3005-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20709929

RESUMO

Photophores (photogenic organs) of the lantern shark Etmopterus spinax are under hormonal control, with prolactin (PRL) and melatonin (MT) triggering the light emission. Differential sensitivity to these hormones in adult individuals suggests, however, that the luminescence of this shark is controlled by an additional mechanism. In this study, different techniques were used to investigate a potential modulator of E. spinax luminescence - nitric oxide (NO). NO synthase (NOS)-like immunoreactivity (IR) was found in the photocytes (photogenic cells) of the photophores. In addition, acetylated tubulin IR also supported the presence of nerves running through the photogenic tissue and innervating different structural elements of the photophores: photocytes, pigmented cells from the iris-like structure and lens cells. Pharmacological experiments confirmed a modulatory action of NO on the hormonally induced luminescence: NO donors sodium nitroprusside (SNP) and hydroxylamine decreased the time to reach the maximum amplitude (TL(max)) of MT-induced luminescence while these substances decreased the maximum amplitude of PRL-induced luminescence (and also the TL(max) in the case of SNP). The small impact of the NOS inhibitor l-NAME on hormonally induced luminescence suggests that NO is only produced on demand. The cGMP analogue 8BrcGMP mimicked the effects of NO donors suggesting that the effects of NO are mediated by cGMP.


Assuntos
Estruturas Animais/metabolismo , Luminescência , Óxido Nítrico/metabolismo , Tubarões/anatomia & histologia , Tubarões/metabolismo , Estruturas Animais/citologia , Estruturas Animais/embriologia , Estruturas Animais/enzimologia , Animais , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Hidroxilamina/farmacologia , Imuno-Histoquímica , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroprussiato/farmacologia , Oxidiazóis/farmacologia , Quinoxalinas/farmacologia , Tubarões/embriologia , Transdução de Sinais/efeitos dos fármacos , Análise Espectral
14.
J Exp Biol ; 213(11): 1852-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472772

RESUMO

Lantern sharks are small deep-sea sharks that harbour complex species-specific luminescent photophore patterns. The luminescent pattern of one of these sharks, Etmopterus spinax, is made up of nine luminous zones. Previous experiments revealed that in the largest of these zones (ventral zone), photophores are under hormonal control, light being triggered by both melatonin (MT) and prolactin (PRL). In this study, we analysed the luminescent responses to MT and PRL in five other luminous zones from 12 female and eight male E. spinax specimens. The results showed that all luminous zones respond to both hormones, with each zone having its own kinetic parameters (maximum light intensity, L(max); total light emitted, L(tot); time from stimulation to L(max), TL(max)), which confirms the multifunctional character of this shark's luminescence. L(tot) and L(max) were found to be directly dependent on the photophore density (P(D)) of the luminous zone, while TL(max) varied independently from P(D). In addition, we demonstrate a sexual dimorphism in the luminescent response to PRL, with male specimens having smaller L(tot) and TL(max) in the luminous zones from the pelvic region. As this region also harbours the sexual organs of this species, this strongly suggests a role for the luminescence from these zones in reproduction.


Assuntos
Tubarões/fisiologia , Animais , Feminino , Luminescência , Masculino , Melatonina/metabolismo , Prolactina/metabolismo , Tubarões/anatomia & histologia
15.
Biol Lett ; 6(5): 685-7, 2010 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-20410033

RESUMO

Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment.


Assuntos
Tubarões/fisiologia , Animais , Luminescência
16.
J Exp Biol ; 212(Pt 22): 3684-92, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19880730

RESUMO

The velvet belly lantern shark (Etmopterus spinax) emits a blue luminescence from thousands of tiny photophores. In this work, we performed a pharmacological study to determine the physiological control of luminescence from these luminous organs. Isolated photophore-filled skin patches produced light under melatonin (MT) and prolactin (PRL) stimulation in a dose-dependent manner but did not react to classical neurotransmitters. The alpha-melanocyte-stimulating hormone (alpha-MSH) had an inhibitory effect on hormonal-induced luminescence. Because luzindole and 4P-PDOT inhibited MT-induced luminescence, the action of this hormone is likely to be mediated through binding to the MT2 receptor subtype, which probably decreases the intracellular concentration of cyclic AMP (cAMP) because forskolin (a cAMP donor) strongly inhibits the light response to MT. However, PRL seems to achieve its effects via janus kinase 2 (JAK2) after binding to its receptor because a specific JAK2 inhibitor inhibits PRL-induced luminescence. The two stimulating hormones showed different kinetics as well as a seasonal variation of light intensity, which was higher in summer (April) than in winter (December and February). All of these results strongly suggest that, contrary to self-luminescent bony fishes, which harbour a nervous control mechanism of their photophore luminescence, the light emission is under hormonal control in the cartilaginous E. spinax. This clearly highlights the diversity of fish luminescence and confirms its multiple independent apparitions during the course of evolution.


Assuntos
Luz , Luminescência , Melatonina/farmacologia , Prolactina/farmacologia , Tubarões , Pele , Animais , Tubarões/anatomia & histologia , Tubarões/metabolismo , Transdução de Sinais/fisiologia , Pele/citologia , Pele/efeitos dos fármacos , alfa-MSH/farmacologia
17.
Zoology (Jena) ; 112(6): 433-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19674879

RESUMO

Bioluminescence is known to be of great ecological importance to a luminous organism but extremely few studies investigate the ontogeny of luminous capabilities. The photogenic pattern of the velvet belly lantern shark Etmopterus spinax was investigated over ontogeny (14.0-52.5 cm total length) to determine the scaling of the surface area and the photophore density of different luminous zones as well as the ecological consequences of ontogenetic variations in bioluminescence efficiency. According to the luminous zone considered, different scaling patterns were found for the surface areas while the photophore densities of all zones scale with negative allometry, even though photophore insertion occurs. No sexual differences in these relationships were found. Luminous zones can be placed in two morphologically different groups: the "coverage" and the "isolated" zones. While counter-illumination is certainly the function of the former, the latter are probably involved in intraspecific behaviours. Due to the discrepancy between luminous capabilities of these two luminous zone categories, there is an ontogenetic increase in the luminescence heterogeneity of the luminous pattern as it was shown by luminescence modelling and confirmed by direct observations of spontaneous luminescence in living sharks. This heterogeneity certainly represents a trade-off between an efficient ventral camouflage and a strong identification tool for intraspecific behaviours such as coordinate hunting, which would be particularly useful when E. spinax become fish eaters (>19 cm total length), and for sexual recognition in mature individuals.


Assuntos
Luminescência , Tubarões/crescimento & desenvolvimento , Tubarões/fisiologia , Animais , Feminino , Medições Luminescentes , Masculino
18.
Physiol Biochem Zool ; 82(1): 20-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19006469

RESUMO

As top predators in many oceanic communities, sharks are known to eat large prey and are supposedly able to generate high bite forces. This notion has, however, largely gone untested due to the experimental intractability of these animals. For those species that have been investigated, it remains unclear whether their high bite forces are simply a consequence of their large body size or the result of diet-related adaptation. As aquatic poikilotherms, sharks can grow very large, making them ideal subjects with which to investigate the effects of body size on bite force. Relative bite-force capacity is often associated with changes in head shape because taller or wider heads can, for example, accommodate larger jaw muscles. Constraints on bite force in general may also be released by changes in tooth shape. For example, more pointed teeth may allow a predator to penetrate prey more effectively than blunt, pavementlike teeth. Our analyses show that large sharks do not bite hard for their body size, but they generally have larger heads. Head width is the best predictor of bite force across the species included in our study as indicated by a multiple regression model. Contrary to our predictions, sharks with relatively high bite forces for their body size also have relatively more pointed teeth at the front of the tooth row. Moreover, species including hard prey in their diet are characterized by high bite forces and narrow and pointed teeth at the jaw symphysis.


Assuntos
Comportamento Alimentar/fisiologia , Arcada Osseodentária/fisiologia , Tubarões/anatomia & histologia , Tubarões/fisiologia , Dente/anatomia & histologia , Análise de Variância , Animais , Tamanho Corporal , Cabeça/anatomia & histologia , Filogenia , Análise de Regressão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...